

Curiosity-Based Learning Algorithm for

Distributed Interactive Sculptural

Systems

Matthew T.K. Chan, Rob Gorbet, Philip Beesley and Dana Kulić

Beesley, Philip, Matthew T.K. Chan, Rob Gorbet, and Dana Kulić. “Curiosity-Based Learning Algorithm for

Distributed Interactive Sculptural Systems.” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS) 28 Sept – 02 Oct 2015: 3435-3441. Print.

Curiosity-Based Learning Algorithm

for Distributed Interactive Sculptural Systems

Matthew T. K. Chan, Rob Gorbet, Philip Beesley and Dana Kulić

Abstract — The ability to engage human observers is a key

requirement for both social robots and the arts. In this paper,

we propose an approach for adapting the Intelligent Adaptive

Curiosity learning algorithm to distributed interactive

sculptural systems. This Curiosity-Based Learning Algorithm

(CBLA) allows the system to learn about its own mechanisms

and its surroundings through self-experimentation and

interaction. A novel formulation using multiple agents as

learning subsets of the system that communicate through shared

input variables enables us to scale to a much larger system with

diverse types of sensors and actuators. Experiments on a

prototype interactive sculpture demonstrate the exploratory

patterns of the CBLA and collective learning behaviours

through the integration of multiple learning agents.

Keywords— robots and embodied art, reinforcement

learning, intrinsic motivation

I. INTRODUCTION

Interactive arts are a type of art form that requires the

involvement of the spectators to achieve its purpose. With

recent advances in capabilities and miniaturization of

computers, sensors and actuators, artists now have access to

more tools to create highly complex interactive artworks. In

the Hylozoic Series of kinetic sculptures built by Philip

Beesley Architect Inc., the designers use a network of

microcontrollers to control and sample a sizable number of

actuators and sensors [1] [2]. Each node in the network can

perform a simple set of interactive behaviours. While the

behaviours have previously been either pre-scripted or

random, complex group behaviours have been seen to emerge

through the communication among nodes and interaction with

the spectators [3].

In this paper, we introduce the Curiosity-Based Learning

Algorithm (CBLA) to replace pre-scripted responses in the

Hylozoic series installation. The CBLA re-casts the

interactive sculpture as a set of agents driven by an intrinsic

desire to learn. Presented with a set of input and output

variables that it can observe and control, each agent tries to

understand its own mechanisms, its surrounding environment,

and the occupants, by learning models relating its inputs and

outputs. We hypothesize that the occupants will find the

behaviours which emerge during CBLA-based control to be

interesting, more life-like, and less robotic.

This approach reduces the reliance on humans to manually

design interesting and “life-like” behaviours. In systems with

large numbers of sensors and actuators, programming a

complex set of carefully choreographed behaviours is

complicated and requires lengthy implementation and testing

processes. Furthermore, this approach allows the sculpture to

adapt and change its behaviour over time. This is especially

interesting for permanent installations in which the same users

may interact with the sculpture over an extended period of

time.

A. Related Work

Interactive arts can be categorized as Static, Dynamic-

Passive, Dynamic-Interactive, and Dynamic-Interactive

(varying) based on the degree of the interaction between the

art works and the viewers [4]. Dynamic-Interactive systems

give the human viewers an active role in defining the

behaviours of the system. This category introduces an agent

that modifies the specifications of the art object. This

additional unpredictability introduces a new dimension of

complexity to the behaviours of the system.

In [5], Drummond examined the conceptual elements of

interactive musical arts. For an interactive system to move

beyond being simply a complex musical instrument with a

direct reactive mapping from inputs to generation of sound, it

must possess some level of autonomy in the composition and

generation of music. In addition, the interactivity should be

bilateral; the performer influences the music and the music

influences the performer. These concepts can easily be

extended to visual and kinetic arts. Visual-based interactive

systems such as the Iamascope in Beta_space [6] and audio-

based systems such as Variations [7] engaged the participants

by allowing them to directly affect the output of the system.

Works in interactive architecture [1] [8] try to provide a

responsive and immersive environment where the viewers can

feel as if they belong to the system.

However, most of these works are the non-varying type of

Dynamic-Interactive system, as their responsive behaviours

do not change. Over a longer term, the system will become

more predictable and its effectiveness in engaging the users

will consequently decrease. In this work, we aim to create a

varying interactive artwork by emulating the characteristics

of living organisms such as curiosity and learning [3].

To emulate life-like behaviours, one can start by

observing how human beings behave. [9], [10] modelled how

human beings convey or mask their intentions through

movement and applied these models on a humanoid robot.

Similarly, [11] focuses on making the robot’s motion more

understandable by emulating the coordinated effects of

human joints. Those studies focus their attention on making

the intent of the robots clear. In contrast, our objective is to

make robots more engaging and life-like, where

unpredictability might be a desirable quality. For instance,

[10] showed that the robot’s perceived intelligence increased

when the participants believed that the robot was intentionally

deceptive. Our work investigates whether unpredictable

This work was supported by the Natural Sciences and Engineering
Research Council.

All authors are with the University of Waterloo, Waterloo, ON, Canada

(email: matthew.chan@uwaterloo.ca).

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Congress Center Hamburg
Sept 28 - Oct 2, 2015. Hamburg, Germany

978-1-4799-9993-4/15/$31.00 ©2015 IEEE 3435

behaviours emerging from the learning process will appear

more life-like and engaging.

One of the open questions in artificial life research is

whether we can demonstrate the emergence of intelligence

and mind [12], examined in projects such as the Petting Zoo

by Minimaforms [13] and Mind Time Machine [14]. The

idea of emergence of structure and consciousness is explored

in many previous works in the field of developmental robotics

[15] [16] [17]. Oudeyer et al. developed a learning

mechanism called Intelligent Adaptive Curiosity (IAC) [18],

a reinforcement learning algorithm with the objective of

maximizing learning progress. In his experiments, he showed

that an agent would tend to explore state-space that is neither

too predictable nor too random, mimicking the intrinsic

human drive of curiosity, which continually tries to explore

areas that have the highest potential for learning new

knowledge. However, previous work did not cover how the

IAC might be scaled to a distributed system with a large

sensorimotor space.

This paper builds on Oudeyer’s IAC and applies it on an

architectural-scale distributed interactive sculptural system.

This requires a control architecture that can communicate and

synchronize with many individual nodes.

By having multiple learning agents that focus on different

subsets of the system, the dimensionality of each agent’s

sensorimotor space can be reduced. Furthermore, multiple

learning agents can be set up to run in parallel but at different

frequencies in order to accommodate different actuator

bandwidths. These different agents are coupled through

shared sensory channels and their operating environments,

leading to collective learning through individual explorations.

II. PROTOTYPE INTERACTIVE SCULPTURAL SYSTEM

The CBLA requires a large increase in sensing and control

capability which previous versions of the Hylozoic Series

embedded electronics [1] are unable to provide. A new

Hylozoic series was developed with re-designed hardware, to

enable the control and sampling of a larger number of

actuators and sensors at a higher frequency.

A. Physical Hardware

The sculpture system is assembled from a number of

clusters. Physically, each cluster comprises 3 Tentacle

devices and 1 Protocell device. A Tentacle device is

composed of two shape memory alloy (SMA) wires and an

LED as actuators, and two infrared (IR) proximity sensors and

a three-axis accelerometer as sensors. When actuated, the two

SMA wires pull a lever, which mobilizes a frond-like arm.

The accelerometer is mounted on the arm and serves as the

proprioceptive sensor for the SMA wires. A Protocell device

comprises a high-power LED as actuator, and an ambient light

sensor for proprioception. Figure 1 shows how they are

mounted spatially. The sensors are both proprioceptive,

sensing the actuated movement, and environmental, sensing

the external environment. For instance, an accelerometer

attached to a Tentacle Arm senses both the movements caused

by activations of the SMA wires and by human contact.

A. Control Architecture

The control software of the sculpture consists of a low-

level layer and high-level layer, connected physically through

USB. The low-level layer consists of the firmware that

interfaces with the peripherals that connect with the actuators

and sensors, which resides on a set of Teensy 3.1 USB-based

development boards (www.pjrc.com). The high-level layer

consists of the tools that facilitate communication with the

low-level layer, and the application that dictates the system

behaviour. The abstraction provided by the high-level layer

allows flexibility in defining the nodes and their relationship

to each other.

Figure 1. Spatial configuration of the physical components (figure adapted

from an image provided by Philip Beesley Architect Inc.).

Figure 2 illustrates the relationship between the different

software components. The high-level and low-level layers

share a set of output parameters that govern the behaviours,

and input parameters that represent the states of the system.

Figure 2 The low-level layer consists of the Teensy devices which

interface with the physical hardware (not shown in the figure). On the high-

level layer, a Teensy Interface thread is created for each Teensy, to

communicate with the applications. The Teensy Manager may also be called
to perform system-wide functions. The CBLA is one application that can

control the sculptural system. Other applications may also be run in parallel

(e.g., an Occupancy Map generator, shown but not discussed here).

The cluster system is abstracted into two types of nodes:

Tentacle Node and Protocell Node. Each node is

characterized by a configuration and a set of input and output

variables. Specifications of the nodes are presented in the

experiment sections.

3436

III. CURIOSITY-BASED LEARNING ALGORITHM

In this section, we first briefly describe the Intrinsic

Adaptive Curiosity (IAC) algorithm proposed by Oudeyer

[18]. Then, our approach for adapting and generalizing the

algorithm for implementation on a distributed kinetic

sculpture is presented. This includes additional parameters,

the introduction of an idle mode, and the integration of

multiple learning agents in a distributed network.

A. Intrinsic Adaptive Curiosity

In [18], Oudeyer’s goal was to develop a robot that is

capable of life-long learning. The robot makes sense of the

mapping between its actuators and sensors through

continuous self-experimentation, without explicit instruction

from human experts. Fundamentally, the IAC is a

reinforcement learning algorithm with an objective to

maximize learning progress. Learning progress is defined as

the reduction in prediction error. In other words, the agent

seeks to explore the region of the sensorimotor space that

leads to the highest improvement in prediction error. As a

result, the algorithm avoids learning in the parts of

sensorimotor space that are either too random or too

predictable. This formulation leads to continual change in

behaviour over time, as regions of the state space that are

initially interesting become less interesting as the system

becomes more knowledgeable about them.

The system consists of two learning mechanisms, the

Classic Machine learner (classM) and the Meta Machine

learner (metaM). Based on the context (the sensor inputs) and

the action (the actuator outputs), classM computes a

prediction of the consequence, i.e., the sensor values at the

next time step. Then, it compares the actual consequence with

the prediction and modifies its model to reduce the error in

the subsequent prediction. metaM predicts the error of

classM, i.e., how accurately classM is able to predict the

consequence. The actual prediction error is then fed back to

metaM, which modifies its estimate of prediction error of the

newly modified classM. This change in the prediction error is

recorded at each time step in the Knowledge Gain Assessor

(KGA). The KGA then computes the expected learning

progress by calculating the change in error estimation. This

expected learning progress is used as the reward.

In Oudeyer’s paper [18], one important feature is the idea

of regional experts. Each region collects exemplars of similar

sensorimotor context, and has an expert that is trained on the

exemplars in the region. Exemplars are the training data for

the prediction model and they are collected as the system

selects actions and observes the consequences. The “features”

are the sensory inputs S(t), and selected actions M(t) at time t;

and the “labels” are the resultant sensory inputs S(t+1) at time

t+1. The regional experts constrain the estimate of learning

progress within their respective sensorimotor contexts. This is

important because it allows each expert to use a simpler

model, as it covers only a small region of the state space.

The following are the steps for the learning algorithm:

1. Read sensory inputs S(t)

2. Select action M(t) with the highest predicted

learning progress R(SM(t)) based on ε-greedy

selection policy

3. Consult expert specialized in the relevant

sensorimotor context SM(t) to predict the expected

sensory inputs S(t+1)’

4. Perform action M(t)

5. Observe actual sensory inputs S(t+1) and add to the

expert’s training set

6. Compute prediction error e(t+1) = S(t+1) – S(t+1)’

7. Compute the change in prediction error R(SM(t)) =

-[e(t+1) - e(t)]

8. Update the learning progress for the sensorimotor

context R(SM(t))

9. Repeat 1 to 8 indefinitely

B. CBLA Engine

Oudeyer [18] observed during IAC experiments that the

resulting robot behaviour had similarities to children’s

learning and playing behaviours. We hypothesize that this

type of learning mechanism is well suited to interactive

architecture systems, as the learning process itself will

generate interesting behaviours and be an interesting feature

of the installation to the visitors. We now adapt the IAC

algorithm [18] to implement a learning architecture on the

distributed architectural system described in Section II. Each

system node runs its own version of the algorithm, called the

CBLA engine. It is comprised of a node, an action selector,

and an expert, as illustrated in Figure 3.

Figure 3. (1) At the start of each time step, the Node outputs the current

possible actions M(t)’s given S(t). (2) Then, the Expert provides the Action

Values associated with those possible M(t) to the Action Selector. (3) After
that, the Action Selector selects an action and actuates the Node. (4) After the

Node has performed the action, it returns the actual resultant state S(t+1) to

the Expert. The Expert can then improve its internal prediction model and
update the Action Value associated with SM(t).

Node: A node represents a subset of the sculptural system.

Each node is specified by set of sensor input and actuator

output variables, and its own set of configuration parameters

and functions, embodying the characteristics of the physical

system that it represents. It communicates with the lower-

level layer to set the actuator outputs and sample the relevant

sensory inputs. The type and number of sensory inputs and

actions are configurable, example configurations will be

described in more detail in Section IV.

Action Selector: The action selector selects an action

based on a list of possible actions, M(t), and their associated

action values. It either selects an action that has the highest

value (exploitation), or selects an action from the list at

random (exploration). In the experiments presented in this

paper, a version of the adaptive ε-greedy [19] action selection

method was used. ε specifies the probability that a random

action is selected instead of the action with highest action

value. The magnitude of ε changes based on the magnitude of

the action value. When the action value is low, the probability

of selecting a random action is high since the current expected

3437

reward is low and it’s worth spending time exploring new

regions that may lead to higher rewards.

Expert: An Expert consists of a prediction model, a set of

exemplars, a Knowledge Gain Assessor (KGA), a region

splitter, and potentially two child experts. The prediction

model models the relationship between the node’s input and

output variables. In all the experiments presented in this

paper, linear regression was used. At every time step, the

model is used to make a prediction about the immediate future

state based on the current state and the selected action. This

prediction model is trained on the set of exemplars that were

previously observed. These exemplars are represented as

[SM(t),S(t+1)] pairs. SM(t) represents the sensorimotor

context, i.e., the concatenation of the sensory state and the

action taken at time t. S(t+1) represents the observed sensory

state at time t+1. The KGA calculates the reward given the

predicted and actual sensory inputs.

Figure 4 illustrates the internal workings of the KGA. The

metaM returns the average error over a window of time τ time

steps ago, <e(t+1)-τ>. The reward is calculated by

subtracting the current mean error, <e(t+1)>. The action

selector then computes the action values using this reward.

Figure 4. S(t+1) and S’(t+1) are the actual and predicted sensor input

variables. (1) The KGA computes the error as the root-mean-square of their

difference. (2) After that, it computes the mean error over a window of

previously calculated errors. Note that the mean error is only calculated based
on errors associated with this particular region. (3) The metaM predicts the

error by taking the mean error over time. (4) Finally, the KGA outputs the

Reward by subtracting the actual mean error from the predicted mean error.

An expert represents a region in the sensorimotor space.

Each prediction is generated by the expert in the region with

the most similar sensorimotor context. Figure 5 shows the

internal mechanism of an Expert.

Figure 5. (1) The prediction model of the Expert first makes a prediction of

the resultant sensor input S(t+1)’ based on the current sensorimotor context,

SM(t). (2) This prediction and the actual sensor input S(t+1) is then fed into
the KGA. S(t+1) is also added to the collection of exemplars, which the

prediction model is trained on at every time step. (3) After that, the KGA

computes the reward and updates the Action Value associated with SM(t) in
the Expert memory. These Action Values are recalled to evaluate a possible

action in the next time step the Expert is active.

The system initially has only one region. All new

exemplars are added to the same region. As more exemplars

are added to memory, a region will split into two parts if it

contains a sufficient number of exemplars and if prediction

error is high. This prevents learned models with high accuracy

from being split indefinitely.

If the split criteria are met, the Region Splitter finds a cut

value and a cut dimension that minimizes the average

variance in each sub-region. In the current implementation,

100 random cut values are generated for each dimension and

the corresponding variances of the resultant sensor inputs are

computed. The cut value and dimension pair with the lowest

variance is selected, and the exemplars of the parent region

are split into the two regions based on the cut dimensions and

values. The high-level mechanism of the region splitting

process is illustrated in Figure 6.

Figure 6. When the function “split()” is called, it first checks if the split

criteria are met by calling “is_splitting()”. If the split criteria are met, it

forwards the exemplars to the Region Splitter. The Region Splitter then splits
the exemplars into two and assigns them to the Left and Right Expert. Other

properties such as the previous errors and rewards are passed on as well.

The overall process is described in the pseudocode for the

CBLA and is shown in Figure 7.

Figure 7. Pseudocode for the CBLA

1) Differences between the CBLA Engine and the IAC

In developing the CBLA Engine described above, several

adaptations have been made to the IAC algorithm to enable

application to the kinetic sculpture installation.

First, several improvements are made to the logic of the

Region Splitter. As we run the algorithm over an extended

period of time, the expert might not be able to improve the

prediction model any further given the available sensory

information. Since Oudeyer’s method simply splits a region

when the number of exemplars exceeds a certain threshold, it

will continue to split regions even when the expert associated

with that region has already acquired a good model with low

prediction error. This is undesirable as it leads to over-fitting

and makes the system harder to adapt when the system itself

or the environment changes. In our implementation, an

additional prediction error threshold is added to prevent

regions from splitting when the prediction error is low.

Moreover, if the split does not improve the prediction

accuracy, there is no reason to split the region. After the split,

the split quality measured by the magnitude of the average

within-group variance must also be above a threshold. If it is

not, the split will be retracted. During the early stages of the

learning process, learning opportunities are plenty. Setting the

split number threshold too high can hamper the speed of

learning. However, over time, easy learning opportunities

diminish and complex regions require a larger number of

exemplars. Thus, the split number threshold grows at a

t = 0

S(t) = S(0)

Loop:

[Possible_M(t)] = Node  get_possible_action(S(t))

[Action_Value(M(t))] = Expert  evaluate_action(Possible_M(t))

M(t) = Action_Selector  select_action([Possible_M(t), Action_Value])

Node  actuate(M(t))

S(t+1) = Node  report()

S'(t+1) = Expert  predict(S(t), M(t))

Expert  append(S(t), M(t), S(t+1), S'(t+1))

Expert  split()

t = t + 1

3438

constant rate every time a split happens. This way, less

explored regions can maintain low thresholds that promote

learning, while mature regions have higher thresholds that

promote gathering more exemplars and reduce over-fitting.

Second, visually, it is difficult to distinguish between the

periods when the CBLA is learning from the periods when the

CBLA is simply executing random actions after all regions

are learned. In order to better demonstrate the learning

process, an idle mode is introduced. In our experiments, the

idle mode action is chosen as the action that requires the least

power. This gives the visitors the sense that the sculpture is

resting. During idle mode, the system selects the idle action a

majority of the time. Otherwise, it will select an action based

on its regular action selection policy. The CBLA engine enters

idle mode when the average highest reward over a window of

time is lower than a threshold. Conversely, it exits idle mode

when the average highest reward, or the change of it, over a

window of time is higher than a threshold. Once it exits idle

mode, it must stay in non-idle mode for at least a certain

period of time before being allowed to enter idle mode again.

C. CBLA System

One option for controlling a larger system of sensors and

actuators is to control them centrally through a single CBLA

engine. Yet, if all output and input variables are grouped into

one node, the sensorimotor state will become very large and

it may take a long time for the system to converge and react

to changes. Thus, subsets of related variables are grouped into

nodes. Each node runs on its own CBLA engine in parallel.

There are several options for grouping sensors and

actuators into nodes. One approach is to group actuators and

their associated proprioceptive sensors by function, because

these relationships are the easiest to model. In addition, if

multiple actuators work together to perform one function that

directly affects one sensor, they should be grouped as a node

because their relationship must be considered in order to

produce a prediction model for the sensor input. However,

grouping simply by function cannot capture environmental

changes and occupant interaction effectively.

Another approach is to group sensor input and actuator

output variables by spatial proximity. Since environmental

changes and occupant interaction are likely to affect

components that are close together physically, this will allow

the system to capture those dynamics more effectively.

However, all sensor input and actuator output variables

associated with a particular node are updated once per loop.

This means that the loop speed is limited by the slowest

actuator or sensor within the node. For instance, an SMA-

actuated Tentacle node has heating and cooling time of about

12 seconds, while an LED can be turned on and off many

degrees of magnitude faster. This is very inefficient and

limiting for the fast components. Therefore, components

running at different speeds should be grouped into different

nodes. This allows each node to run at its own speed,

independently from the other nodes.

In our implementation, each node is constructed of

components that are related functionally and proximally. For

instance, LED output and ambient light sensor are in one

node; Tentacle motion and accelerometer are in one node. On

top of that, nodes that can be run at similar speed are grouped

into one synchronization group. Different synchronization

groups run at different frequencies and capture the dynamics

of the system at different time scales.

Nevertheless, if the nodes perform learning independently,

the CBLA does not actually capture the dynamics of the entire

system. To integrate the nodes into one coherent entity, we

have used shared sensors.

By using input variables relating to a common sensor,

system changes effected by one node can be detected by

another node indirectly. In our system, the Protocell node and

Tentacle nodes share an IR proximity sensor. Figure 8

illustrates the connections and groupings used in this

experimental test bed.

Figure 8. Nodes' connections and groupings

IV. EXPERIMENT 1: DEMONSTRATION OF EXPLORATORY

PATTERN OF THE CBLA ON A PROTOCELL NODE

Although the CBLA was designed for a multi-node

distributed system, it can be difficult to visualize the modeling

process due to the high-dimensionality of the data and the

models. To demonstrate the action selection pattern and the

learning process, it was first tested on a simple toy example

that can easily be visualized in 2-dimensional space. In this

experiment, idle mode was disabled as the main objective was

to observe and verify the exploration pattern of the CBLA.

The system in this experiment consists of a Protocell node;

a single-input, single-output system. For this system, S is a

scalar measurement from an ambient light sensor, recorded

directly as a 12-bit value. M corresponds to the voltage duty

cycle supplied to the LED, with 0 being completely off (0V)

and 100 being the maximum allowable voltage (~4.7V). The

loop period was set to 0.05s. In this experiment, the system

ran for 2500 time steps without any external interference.

Based on the reward structure, which favours learning first

the most predictable regions of the state-space, the CBLA

should first explore the regions of the sensorimotor space that

have low variance. Once the model in that region is learned,

it should move on to areas with higher variance.

Figure 9 shows the evolution of the prediction model and

actual exemplars over time. As expected, the CBLA first

selected actions associated with lower LED output levels,

which were within the low variance regions. Once the models

in the low brightness regions were acquired, it moved toward

higher brightness regions. Figure 10 shows that the best action

and the actual selected action were completely random at first

(T<400). The system then focused on the easy-to-learn, lower

brightness level. After that, it moved toward the hard-to-learn,

higher brightness regions when it saw little improvement in

the low-brightness regions (T=1500). After a period of

3439

exploration in the high-brightness regions, their associated

prediction errors were reduced, and the system returned to the

low-brightness regions (T=1900). The resulting pattern of

activation was interesting visually, as it resulted in non-

random activations that have the potential to convey a notion

of intent to the viewers.

Figure 9. Evolution of the prediction models. Each point represents an

exemplar. Points with the same colour are in the same region and the black

lines are the cross-section of the linear models at S(t) = 0. The regions are

numbered in the order that they were created.

Figure 10. Action vs Time Graph; the y-axis is the output of the LED M(t)

and the x-axis is the time step. Orange dots represent the actual action taken
and blue dots represent the best action. The best action is defined as the action

with the highest action value given the sensorimotor context. Non-best
actions are selected occasionally in order to explore the state space.

Figure 11. Mean error vs time graph. Each colour represents a region and the

colour code corresponds to final prediction model graph in Figure 10.

Figure 11 shows the mean error vs. time graph. The

prediction error quickly dropped to a relatively low level. To

improve its prediction further, the state-space was split into

regions with low and high error. This allowed Region 1 (low

variance region) to further reduce its prediction error.

Figure 12 shows that the action value of a region does not

stay constant. As the prediction improves, the value of actions

in that region decreases over time as the region becomes

“learned” and further learning potential decreases.

Figure 12. Action value vs time graph

V. EXPERIMENT 2: TENTACLE AND PROTOCELL NODES

In this Section, we describe a demonstration of an integrated

system consisting of both light and SMA actuation

mechanisms. In this experiment, there is one Protocell node

and three Tentacle nodes. The Protocell node was the same as

in Section IV, with the addition of an IR proximity sensor. For

the Tentacle node, the input variables are the average

accelerometer readings of the three axes, and the IR proximity

sensor reading over the 12.5s loop period; the output variable

is the action of the Tentacle Arm. There are four discrete

actions: rest, lower to the right, lower to the left, and lower to

the centre. Note that in this set up, the two types of nodes run

with different loop periods, but coupling between them is

accomplished through the shared IR proximity sensor, which

measures occupant proximity as a 12-bit value.

The system runs undisturbed until, after some initial

learning, all of the nodes enter idle mode. During this time,

the IR proximity sensor is pointed toward an empty area.

Then, a participant approaches the sculpture space and is

detected by the IR proximity sensor. The system should then

exit idle mode and begin learning a new model that captures

the change in the environment. Since the IR sensor is shared

by all nodes, they are all expected to recognize the change and

exit idle mode at approximately the same time.

Figure 13 shows how the action values change over time

for each node. The coloured lines represent the action values

and each colour represents a region. The blue dots underneath

the plot indicate when the node was idle.

At first, all the nodes started learning their own models,

and then entered idle mode. At around 390s, a human

participant walked in front of the IR proximity sensor. This

triggered a large reduction in action value at first, due to an

increase in prediction error. However, as more data was

collected, the action values for all four nodes quickly jumped

3440

up. This prompted the nodes to exit idle mode and begin

generating actions in an attempt to learn the model. After a

period of readjustment, all nodes re-entered idle mode after

the new environment was learned. Videos of this experiment

can be viewed in the accompanying video submission.

From the video and Figure 13, one can see that the

Protocell node and the three Tentacle nodes reacted to the

environmental change nearly simultaneously. They exited the

idle state and shifted to more exploratory actuation patterns.

This showed that the shared sensor input variable was able

link the CBLA engines together, even though they run

independently at different frequencies. This experiment

demonstrates that the reaction of the system to the changed

environmental conditions creates an interaction with the

visitor without any explicitly pre-programmed behaviours.

The system’s intrinsic curiosity drives itself to perform

actions and elicit responses from this new environment with

the participant’s presence, and update its prediction model.

We anticipate that the visitors will find such behaviours

engaging as the visitors can recognize that the sculpture is

responding to their presence and action but they would not be

able to easily predict how it might respond. This quality

provides the CBLA System the potential to be more life-like

than a pre-scripted or a random system.

Figure 13. Action-value vs Time graph for the Protocell node (a) and the

three Tentacle nodes (b), (c), (d).

VI. CONCLUSIONS AND FUTURE WORK

Motivated by the desire to make interactive art sculpture

more life-like and engaging in the long term, we adapted the

concept of curiosity-based learning from developmental

robotics for a distributed system with abstract forms and large

numbers of sensors and actuators. By grouping subsets of

input and output variables based on their functions, spatial

proximities, and cycle times, each learning agent can mitigate

the curse of dimensionality and operate with a configuration

suitable for its component characteristics, while forming a

coherent entity through shared sensors.

We presented two experiments demonstrating the

exploration patterns of the CBLA and testing the multi-node

CBLA system integrated by a shared sensor. These promising

results demonstrated the possibility of applying intrinsic

curiosity-based learning on large-scale distributed system.

In the future, we plan to conduct further experiments to

examine and characterize the exploratory patterns and human

perception of the emergent behaviours of a CBLA system

with a larger number of nodes under various configurations.

REFERENCES

[1] P. Beesley, Hylozoic Ground: Liminal Responsive Architectures,
Toronto, ON, Canada: Riverside Architectual Press, 2010.

[2] P. Beesley, Kinetic Architectuers & Geotextile Installations, Toronto,

ON: Riverside Architectural Press, 2007, 2010.

[3] P. Beesley, Sibyl, Toronto, ON: Riverside Architectural Press, 2012.

[4] E. Edmonds, G. Turner and L. Candy, "Approaches to interactive art

systems," in The 2nd international conference on Computer graphics
and interactive techniques in Australasia and South East Asia,

Singapore, 2004.

[5] J. Drummond, "Understanding Interactive Systems," Organised
Sound, vol. 14, no. 02, pp. 124-133, 2009.

[6] B. Costello, L. Muller, S. Amitani and E. Edmonds, "Understanding

the Experience of Interactive Art: lamascope in Beta_space," in the
second Australasian conference on Interactive entertainment , Sydney,

Australia, 2005.

[7] B. Wands, "Variations: an interactive musical sculpture," in The 5th
conference on Creativity & Cognition, London, UK, 2005.

[8] Hangar.org, "Interactive Architecture," [Online]. Available:
http://www.hangar.org/docs/docs_lab/IA.pdf.

[9] A. D. Dragan, S. Bauman, J. Forlizzi and S. S. Srinivasa, "Effects of

Robot Motion on Human-Robot Collaboration," in Proceedings of the
Tenth Annual ACM/IEEE International Conference on Human-Robot

Interaction, 2015.

[10] A. Dragan, R. Holladay and S. Srinivasa, "An Analysis of Deceptive
Robot Motion," in Robotics: Science and Systems, 2014.

[11] M. J. Gielniak, K. C. Liu and L. A. Thomaz, "Generating human-like

motion for robots," The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1275-1301, 2013.

[12] M. A. Bedau, J. S. McCaskill, N. H. Packard, S. Rasmussen, C. Adami,

D. G. Green, T. Ikegami, K. Kaneko and T. S. Ray, "Open Problems
in Artificial Life," Artificial Life, vol. 6, pp. 365-376, 2000.

[13] Minimaforms, "Petting Zoo FRAC Centre," Minimaforms, [Online].

Available: http://minimaforms.com/petting-zoo-frac/.

[14] T. Ikegami, "A Design for Living Technology: Experiments with the

Mind Time Machine," Artitificial Life, vol. 19, pp. 387-400, 2013.

[15] M. Lungarella, G. Metta, R. Pfeifer and G. Sandini, "Developmental
robotics: a survey," Connection Science, vol. 15, no. 4, pp. 151-190,

2003.

[16] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y.
Yoshikawa, M. Ogino and C. Yoshida, "Cognitive Developmental

Robotics: A Survey," IEEE Transactions on Autonomous Mental

Development, vol. 1, no. 1, pp. 12-34, 2009.

[17] V. R. Kompella, M. F. Stollenga, M. D. Luciw and J. Schmidhuber,

"Explore to See, Learn to Perceive, Get the Actions for Free:

SKILLABILITY," in International Joint Conference on Neural
Networks, Beijing, China, 2014.

[18] P.-Y. Oudeyer, F. Kaplan and V. V. Hafner, "Intrinsic Motivation

Systems for Autonomous Mental Development," IEEE Transactions
on Evoluntionary Computation, vol. 11, no. 2, pp. 265-286, 2007.

[19] M. Tokic, "Adaptive ε-greedy exploration in reinforcement learning

based on value differences," KI 2010: Advances in Artificial
Intelligence, vol. 6359, pp. 203-210, 2010.

(a) (b)

(c) (d)

3441

References
Citation for the above:

Beesley, Philip, Matthew T.K. Chan, Rob Gorbet, and Dana Kulić. “Curiosity-Based Learning
Algorithm for Distributed Interactive Sculptural Systems.” 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) 28 Sept – 02 Oct 2015: 3435-3441.
Print.

For further reading:

Beesley, Philip, Matthew Chan, Rob Gorbet, Dana Kulić, and Mo Memarian. “Evolving Systems
within Immersive Architectural Environments: New Research by the Living Architecture
Systems Group” Next Generation Building 2.1 (2015): 31-56. Print.

Beesley, Philip, Omar Khan, and Michael Stacey, eds. ACADIA 2013 Adaptive Architecture:
Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in
Architecture. Toronto: Riverside Architectural Press, 2014. Print.

Beesley, Philip. “Quasiperiodic Near-Living Systems: Paradigms for Form-Language.” Alive:
Advancements in Adaptive Architecture. Eds. Manual Kretzer and Ludger Hovestadt. Basel:
Birkhäuser, 2014. 26-33.

Beesley, Philip. “Dissipative Prototyping Methods: A Manifesto.” Guest Ed. Rachel Armstrong.
Journal of the British Interplanetary Society 67.7/8/9 (2014): 338-345.

Beesley, Philip, ed. Near-Living Architecture: Work in Progress from the Hylozoic Ground Collaboration
2011-2014. Toronto: Riverside Architectural Press, 2014. Print.

Beesley, Philip. “Input Output: Performative Materials.” Performative Material in Architecture and
Design. Eds. Rashida Ng and Sneha Patel. Bristol: Intellect, 2013. ix-xi.

Beesley, Philip. “Prototyping for Extimacy: Emerging Design Methods.” Prototyping Architecture:
The Conference Papers. Ed. Michael Stacey. Toronto; London: Riverside Architectural
Press and London Building Centre, 2013. Print.

Beesley, Philip. Sibyl: Projects 2010-2012. Toronto: Riverside Architectural Press, 2012. Print.

Beesley, Philip. Hylozoic Ground: Liminal Responsive Architectures. Toronto: Riverside Architectural
Press, 2010. Print.

Beesley, Philip. “Case Study: Meshes as interactive surfaces.” Digital Fabrication in Architecture. By
Nick Dunn. London: Laurence King, 2010. 46-48.

Beesley, Philip and Omar Khan, eds. Responsive Architecture/Performing Instruments. New York:
The Architectural League of New York, 2009. Print.

Beesley, Philip. “Geotextiles.” Eds. Sarah Bonnemaison, and Ronit Eisenbach. Installations by
architects: experiments in Building and Design. New York: Princeton Architectural Press,
2009. 90-97.

Beesley, Philip, and Robert Gorbet. “Arduino at Work: the Hylozoic Soil control system.”
Mobile Nation: Creating Methodologies for Mobile Platforms. Eds. Philip Beesley, Martha
Ladly and Ron Wakkary. Toronto: Riverside Architectural Press, 2008. 235-240, 245-
258. Print.

Beesley, Philip, ed. Kinetic Architectures and Geotextiles Installations. Toronto: Riverside
Architectural Press, 2007 & 2010. Print.

Beesley, Philip, Sachiko Hirosue and Jim Ruxton. “Toward Responsive Architectures.”
Responsive Architectures: Subtle Technologies. Eds. Philip Beesley, Sachiko Hirosue, Jim
Ruxton, M. Trankle and C. Turner. Toronto: Riverside Architectural Press, 2006. Print.
3-11.

Beesley, Philip, and Thomas Seebohm. "Digital tectonic design." Promise and Reality: State of the
art versus state of practice in computing for the design and planning process, Proceedings of the
18th eCAADe Conference. Vol. 23. 2000.

Jakovich, Joanne, and Dagmar Reinhardt. “Trivet Fields: The Materiality of Interaction in
Architectural Space.” Leonardo 42.4 (2009): 216-224.

Schwartzman, Madeline. See yourself sensing: redefining human perception. London: Black Dog
Publishing, 2011. 62.

