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Curiosity-Based Learning Algorithm  

for Distributed Interactive Sculptural Systems  
 

Matthew T. K. Chan, Rob Gorbet, Philip Beesley and Dana Kulić 

Abstract — The ability to engage human observers is a key 

requirement for both social robots and the arts.  In this paper, 

we propose an approach for adapting the Intelligent Adaptive 

Curiosity learning algorithm to distributed interactive 

sculptural systems. This Curiosity-Based Learning Algorithm 

(CBLA) allows the system to learn about its own mechanisms 

and its surroundings through self-experimentation and 

interaction. A novel formulation using multiple agents as 

learning subsets of the system that communicate through shared 

input variables enables us to scale to a much larger system with 

diverse types of sensors and actuators. Experiments on a 

prototype interactive sculpture demonstrate the exploratory 

patterns of the CBLA and collective learning behaviours 

through the integration of multiple learning agents.  

Keywords— robots and embodied art, reinforcement 

learning, intrinsic motivation 

I. INTRODUCTION 

Interactive arts are a type of art form that requires the 

involvement of the spectators to achieve its purpose. With 

recent advances in capabilities and miniaturization of 

computers, sensors and actuators, artists now have access to 

more tools to create highly complex interactive artworks. In 

the Hylozoic Series of kinetic sculptures built by Philip 

Beesley Architect Inc., the designers use a network of 

microcontrollers to control and sample a sizable number of 

actuators and sensors [1] [2]. Each node in the network can 

perform a simple set of interactive behaviours. While the 

behaviours have previously been either pre-scripted or 

random, complex group behaviours have been seen to emerge 

through the communication among nodes and interaction with 

the spectators [3].   

In this paper, we introduce the Curiosity-Based Learning 

Algorithm (CBLA) to replace pre-scripted responses in the 

Hylozoic series installation.  The CBLA re-casts the 

interactive sculpture as a set of agents driven by an intrinsic 

desire to learn.  Presented with a set of input and output 

variables that it can observe and control, each agent tries to 

understand its own mechanisms, its surrounding environment, 

and the occupants, by learning models relating its inputs and 

outputs. We hypothesize that the occupants will find the 

behaviours which emerge during CBLA-based control to be 

interesting, more life-like, and less robotic.  

This approach reduces the reliance on humans to manually 

design interesting and “life-like” behaviours. In systems with 

large numbers of sensors and actuators, programming a 

complex set of carefully choreographed behaviours is 

complicated and requires lengthy implementation and testing 

processes. Furthermore, this approach allows the sculpture to 

adapt and change its behaviour over time. This is especially 

interesting for permanent installations in which the same users 

may interact with the sculpture over an extended period of 

time.  

A. Related Work 

Interactive arts can be categorized as Static, Dynamic-

Passive, Dynamic-Interactive, and Dynamic-Interactive 

(varying) based on the degree of the interaction between the 

art works and the viewers [4]. Dynamic-Interactive systems 

give the human viewers an active role in defining the 

behaviours of the system. This category introduces an agent 

that modifies the specifications of the art object. This 

additional unpredictability introduces a new dimension of 

complexity to the behaviours of the system.  

In [5], Drummond examined the conceptual elements of 

interactive musical arts. For an interactive system to move 

beyond being simply a complex musical instrument with a 

direct reactive mapping from inputs to generation of sound, it 

must possess some level of autonomy in the composition and 

generation of music. In addition, the interactivity should be 

bilateral; the performer influences the music and the music 

influences the performer. These concepts can easily be 

extended to visual and kinetic arts. Visual-based interactive 

systems such as the Iamascope in Beta_space [6] and audio-

based systems such as Variations [7] engaged the participants 

by allowing them to directly affect the output of the system. 

Works in interactive architecture [1] [8] try to provide a 

responsive and immersive environment where the viewers can 

feel as if they belong to the system.  

However, most of these works are the non-varying type of 

Dynamic-Interactive system, as their responsive behaviours 

do not change. Over a longer term, the system will become 

more predictable and its effectiveness in engaging the users 

will consequently decrease. In this work, we aim to create a 

varying interactive artwork by emulating the characteristics 

of living organisms such as curiosity and learning [3].  

To emulate life-like behaviours, one can start by 

observing how human beings behave. [9], [10] modelled how 

human beings convey or mask their intentions through 

movement and applied these models on a humanoid robot. 

Similarly, [11] focuses on making the robot’s motion more 

understandable by emulating the coordinated effects of 

human joints. Those studies focus their attention on making 

the intent of the robots clear. In contrast, our objective is to 

make robots more engaging and life-like, where 

unpredictability might be a desirable quality. For instance, 

[10] showed that the robot’s perceived intelligence increased 

when the participants believed that the robot was intentionally 

deceptive. Our work investigates whether unpredictable 
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behaviours emerging from the learning process will appear 

more life-like and engaging. 

One of the open questions in artificial life research is 

whether we can demonstrate the emergence of intelligence 

and mind [12], examined in projects such as the Petting Zoo 

by Minimaforms [13] and Mind Time Machine [14].   The 

idea of emergence of structure and consciousness is explored 

in many previous works in the field of developmental robotics 

[15] [16] [17].  Oudeyer et al. developed a learning 

mechanism called Intelligent Adaptive Curiosity (IAC) [18], 

a reinforcement learning algorithm with the objective of 

maximizing learning progress. In his experiments, he showed 

that an agent would tend to explore state-space that is neither 

too predictable nor too random, mimicking the intrinsic 

human drive of curiosity, which continually tries to explore 

areas that have the highest potential for learning new 

knowledge. However, previous work did not cover how the 

IAC might be scaled to a distributed system with a large 

sensorimotor space.  

This paper builds on Oudeyer’s IAC and applies it on an 

architectural-scale distributed interactive sculptural system. 

This requires a control architecture that can communicate and 

synchronize with many individual nodes. 

By having multiple learning agents that focus on different 

subsets of the system, the dimensionality of each agent’s 

sensorimotor space can be reduced. Furthermore, multiple 

learning agents can be set up to run in parallel but at different 

frequencies in order to accommodate different actuator 

bandwidths. These different agents are coupled through 

shared sensory channels and their operating environments, 

leading to collective learning through individual explorations.  

II. PROTOTYPE INTERACTIVE SCULPTURAL SYSTEM 

The CBLA requires a large increase in sensing and control 

capability which previous versions of the Hylozoic Series 

embedded electronics [1] are unable to provide. A new 

Hylozoic series was developed with re-designed hardware, to 

enable the control and sampling of a larger number of 

actuators and sensors at a higher frequency.  

A. Physical Hardware 

The sculpture system is assembled from a number of 

clusters. Physically, each cluster comprises 3 Tentacle 

devices and 1 Protocell device. A Tentacle device is 

composed of two shape memory alloy (SMA) wires and an 

LED as actuators, and two infrared (IR) proximity sensors and 

a three-axis accelerometer as sensors. When actuated, the two 

SMA wires pull a lever, which mobilizes a frond-like arm. 

The accelerometer is mounted on the arm and serves as the 

proprioceptive sensor for the SMA wires. A Protocell device 

comprises a high-power LED as actuator, and an ambient light 

sensor for proprioception. Figure 1 shows how they are 

mounted spatially. The sensors are both proprioceptive, 

sensing the actuated movement, and environmental, sensing 

the external environment. For instance, an accelerometer 

attached to a Tentacle Arm senses both the movements caused 

by activations of the SMA wires and by human contact.  

A. Control Architecture 

The control software of the sculpture consists of a low-

level layer and high-level layer, connected physically through 

USB. The low-level layer consists of the firmware that 

interfaces with the peripherals that connect with the actuators 

and sensors, which resides on a set of Teensy 3.1 USB-based 

development boards (www.pjrc.com). The high-level layer 

consists of the tools that facilitate communication with the 

low-level layer, and the application that dictates the system 

behaviour. The abstraction provided by the high-level layer 

allows flexibility in defining the nodes and their relationship 

to each other.  

 
Figure 1. Spatial configuration of the physical components (figure adapted 

from an image provided by Philip Beesley Architect Inc.). 

Figure 2 illustrates the relationship between the different 

software components. The high-level and low-level layers 

share a set of output parameters that govern the behaviours, 

and input parameters that represent the states of the system.  

 
Figure 2  The low-level layer consists of the Teensy devices which 

interface with the physical hardware (not shown in the figure). On the high-

level layer, a Teensy Interface thread is created for each Teensy, to 

communicate with the applications. The Teensy Manager may also be called 
to perform system-wide functions. The CBLA is one application that can 

control the sculptural system. Other applications may also be run in parallel 

(e.g., an Occupancy Map generator, shown but not discussed here). 

The cluster system is abstracted into two types of nodes: 

Tentacle Node and Protocell Node. Each node is 

characterized by a configuration and a set of input and output 

variables. Specifications of the nodes are presented in the 

experiment sections. 
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III. CURIOSITY-BASED LEARNING ALGORITHM 

In this section, we first briefly describe the Intrinsic 

Adaptive Curiosity (IAC) algorithm proposed by Oudeyer 

[18]. Then, our approach for adapting and generalizing the 

algorithm for implementation on a distributed kinetic 

sculpture is presented. This includes additional parameters, 

the introduction of an idle mode, and the integration of 

multiple learning agents in a distributed network. 

A. Intrinsic Adaptive Curiosity 

In [18], Oudeyer’s goal was to develop a robot that is 

capable of life-long learning. The robot makes sense of the 

mapping between its actuators and sensors through 

continuous self-experimentation, without explicit instruction 

from human experts. Fundamentally, the IAC is a 

reinforcement learning algorithm with an objective to 

maximize learning progress. Learning progress is defined as 

the reduction in prediction error. In other words, the agent 

seeks to explore the region of the sensorimotor space that 

leads to the highest improvement in prediction error. As a 

result, the algorithm avoids learning in the parts of 

sensorimotor space that are either too random or too 

predictable. This formulation leads to continual change in 

behaviour over time, as regions of the state space that are 

initially interesting become less interesting as the system 

becomes more knowledgeable about them.   

The system consists of two learning mechanisms, the 

Classic Machine learner (classM) and the Meta Machine 

learner (metaM).  Based on the context (the sensor inputs) and 

the action (the actuator outputs), classM computes a 

prediction of the consequence, i.e., the sensor values at the 

next time step. Then, it compares the actual consequence with 

the prediction and modifies its model to reduce the error in 

the subsequent prediction. metaM predicts the error of 

classM, i.e., how accurately classM is able to predict the 

consequence. The actual prediction error is then fed back to 

metaM, which modifies its estimate of prediction error of the 

newly modified classM. This change in the prediction error is 

recorded at each time step in the Knowledge Gain Assessor 

(KGA). The KGA then computes the expected learning 

progress by calculating the change in error estimation.  This 

expected learning progress is used as the reward.  

In Oudeyer’s paper [18], one important feature is the idea 

of regional experts. Each region collects exemplars of similar 

sensorimotor context, and has an expert that is trained on the 

exemplars in the region. Exemplars are the training data for 

the prediction model and they are collected as the system 

selects actions and observes the consequences. The “features” 

are the sensory inputs S(t), and selected actions M(t) at time t; 

and the “labels” are the resultant sensory inputs S(t+1) at time 

t+1. The regional experts constrain the estimate of learning 

progress within their respective sensorimotor contexts. This is 

important because it allows each expert to use a simpler 

model, as it covers only a small region of the state space.   

The following are the steps for the learning algorithm: 

1. Read sensory inputs S(t) 

2. Select action M(t) with the highest predicted 

learning progress R(SM(t)) based on ε-greedy 

selection policy 

3. Consult expert specialized in the relevant 

sensorimotor context SM(t) to predict the expected 

sensory inputs S(t+1)’ 

4. Perform action M(t) 

5. Observe actual sensory inputs S(t+1) and add to the 

expert’s training set 

6. Compute prediction error e(t+1) = S(t+1) – S(t+1)’ 

7. Compute the change in prediction error R(SM(t)) = 

-[e(t+1) - e(t)] 

8. Update the learning progress for the sensorimotor 

context R(SM(t)) 

9. Repeat 1 to 8 indefinitely 

B. CBLA Engine 

Oudeyer [18] observed during IAC experiments that the 

resulting robot behaviour had similarities to children’s 

learning and playing behaviours.  We hypothesize that this 

type of learning mechanism is well suited to interactive 

architecture systems, as the learning process itself will 

generate interesting behaviours and be an interesting feature 

of the installation to the visitors. We now adapt the IAC 

algorithm [18] to implement a learning architecture on the 

distributed architectural system described in Section II.  Each 

system node runs its own version of the algorithm, called the 

CBLA engine.  It is comprised of a node, an action selector, 

and an expert, as illustrated in Figure 3.  

 
Figure 3. (1) At the start of each time step, the Node outputs the current 

possible actions M(t)’s given S(t). (2) Then, the Expert provides the Action 

Values associated with those possible M(t) to the Action Selector. (3) After 
that, the Action Selector selects an action and actuates the Node. (4) After the 

Node has performed the action, it returns the actual resultant state S(t+1) to 

the Expert. The Expert can then improve its internal prediction model and 
update the Action Value associated with SM(t).  

Node: A node represents a subset of the sculptural system. 

Each node is specified by set of sensor input and actuator 

output variables, and its own set of configuration parameters 

and functions, embodying the characteristics of the physical 

system that it represents. It communicates with the lower-

level layer to set the actuator outputs and sample the relevant 

sensory inputs.  The type and number of sensory inputs and 

actions are configurable, example configurations will be 

described in more detail in Section IV. 

Action Selector: The action selector selects an action 

based on a list of possible actions, M(t), and their associated 

action values. It either selects an action that has the highest 

value (exploitation), or selects an action from the list at 

random (exploration). In the experiments presented in this 

paper, a version of the adaptive ε-greedy [19] action selection 

method was used. ε specifies the probability that a random 

action is selected instead of the action with highest action 

value. The magnitude of ε changes based on the magnitude of 

the action value. When the action value is low, the probability 

of selecting a random action is high since the current expected 
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reward is low and it’s worth spending time exploring new 

regions that may lead to higher rewards. 

Expert: An Expert consists of a prediction model, a set of 

exemplars, a Knowledge Gain Assessor (KGA), a region 

splitter, and potentially two child experts.  The prediction 

model models the relationship between the node’s input and 

output variables. In all the experiments presented in this 

paper, linear regression was used. At every time step, the 

model is used to make a prediction about the immediate future 

state based on the current state and the selected action. This 

prediction model is trained on the set of exemplars that were 

previously observed. These exemplars are represented as 

[SM(t),S(t+1)] pairs. SM(t) represents the sensorimotor 

context, i.e., the concatenation of the sensory state and the 

action taken at time t. S(t+1) represents the observed sensory 

state at time t+1. The KGA calculates the reward given the 

predicted and actual sensory inputs.  

Figure 4 illustrates the internal workings of the KGA. The 

metaM returns the average error over a window of time τ time 

steps ago, <e(t+1)-τ>. The reward is calculated by 

subtracting the current mean error, <e(t+1)>. The action 

selector then computes the action values using this reward. 

 
Figure 4. S(t+1) and S’(t+1) are the actual and predicted sensor input 

variables. (1) The KGA computes the error as the root-mean-square of their 

difference. (2) After that, it computes the mean error over a window of 

previously calculated errors. Note that the mean error is only calculated based 
on errors associated with this particular region. (3) The metaM predicts the 

error by taking the mean error over time. (4) Finally, the KGA outputs the 

Reward by subtracting the actual mean error from the predicted mean error. 

An expert represents a region in the sensorimotor space. 

Each prediction is generated by the expert in the region with 

the most similar sensorimotor context. Figure 5 shows the 

internal mechanism of an Expert. 

 
Figure 5. (1) The prediction model of the Expert first makes a prediction of 

the resultant sensor input S(t+1)’ based on the current sensorimotor context, 

SM(t). (2) This prediction and the actual sensor input S(t+1) is then fed into 
the KGA. S(t+1) is also added to the collection of exemplars, which the 

prediction model is trained on at every time step. (3) After that, the KGA 

computes the reward and updates the Action Value associated with SM(t) in 
the Expert memory. These Action Values are recalled to evaluate a possible 

action in the next time step the Expert is active. 

The system initially has only one region. All new 

exemplars are added to the same region. As more exemplars 

are added to memory, a region will split into two parts if it 

contains a sufficient number of exemplars and if prediction 

error is high. This prevents learned models with high accuracy 

from being split indefinitely. 

If the split criteria are met, the Region Splitter finds a cut 

value and a cut dimension that minimizes the average 

variance in each sub-region. In the current implementation, 

100 random cut values are generated for each dimension and 

the corresponding variances of the resultant sensor inputs are 

computed. The cut value and dimension pair with the lowest 

variance is selected, and the exemplars of the parent region 

are split into the two regions based on the cut dimensions and 

values. The high-level mechanism of the region splitting 

process is illustrated in Figure 6. 

 
Figure 6. When the function “split()” is called, it first checks if the split 

criteria are met by calling “is_splitting()”. If the split criteria are met, it 

forwards the exemplars to the Region Splitter. The Region Splitter then splits 
the exemplars into two and assigns them to the Left and Right Expert. Other 

properties such as the previous errors and rewards are passed on as well.  

The overall process is described in the pseudocode for the 

CBLA and is shown in Figure 7. 

 

Figure 7. Pseudocode for the CBLA 

1) Differences between the CBLA Engine and the IAC  

In developing the CBLA Engine described above, several 

adaptations have been made to the IAC algorithm to enable 

application to the kinetic sculpture installation.  

First, several improvements are made to the logic of the 

Region Splitter. As we run the algorithm over an extended 

period of time, the expert might not be able to improve the 

prediction model any further given the available sensory 

information. Since Oudeyer’s method simply splits a region 

when the number of exemplars exceeds a certain threshold, it 

will continue to split regions even when the expert associated 

with that region has already acquired a good model with low 

prediction error. This is undesirable as it leads to over-fitting 

and makes the system harder to adapt when the system itself 

or the environment changes. In our implementation, an 

additional prediction error threshold is added to prevent 

regions from splitting when the prediction error is low. 

Moreover, if the split does not improve the prediction 

accuracy, there is no reason to split the region. After the split, 

the split quality measured by the magnitude of the average 

within-group variance must also be above a threshold. If it is 

not, the split will be retracted. During the early stages of the 

learning process, learning opportunities are plenty. Setting the 

split number threshold too high can hamper the speed of 

learning. However, over time, easy learning opportunities 

diminish and complex regions require a larger number of 

exemplars. Thus, the split number threshold grows at a 

t = 0 

S(t) = S(0) 

Loop: 

[Possible_M(t)] = Node  get_possible_action(S(t)) 

[Action_Value(M(t))] = Expert  evaluate_action(Possible_M(t))  

M(t) = Action_Selector  select_action([Possible_M(t), Action_Value])  

Node  actuate(M(t)) 

S(t+1) = Node  report() 

S'(t+1) = Expert  predict(S(t), M(t)) 

Expert  append(S(t), M(t), S(t+1), S'(t+1)) 

Expert  split() 

t = t + 1 
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constant rate every time a split happens. This way, less 

explored regions can maintain low thresholds that promote 

learning, while mature regions have higher thresholds that 

promote gathering more exemplars and reduce over-fitting.  

Second, visually, it is difficult to distinguish between the 

periods when the CBLA is learning from the periods when the 

CBLA is simply executing random actions after all regions 

are learned. In order to better demonstrate the learning 

process, an idle mode is introduced. In our experiments, the 

idle mode action is chosen as the action that requires the least 

power. This gives the visitors the sense that the sculpture is 

resting. During idle mode, the system selects the idle action a 

majority of the time. Otherwise, it will select an action based 

on its regular action selection policy. The CBLA engine enters 

idle mode when the average highest reward over a window of 

time is lower than a threshold. Conversely, it exits idle mode 

when the average highest reward, or the change of it, over a 

window of time is higher than a threshold. Once it exits idle 

mode, it must stay in non-idle mode for at least a certain 

period of time before being allowed to enter idle mode again.  

C. CBLA System 

One option for controlling a larger system of sensors and 

actuators is to control them centrally through a single CBLA 

engine.  Yet, if all output and input variables are grouped into 

one node, the sensorimotor state will become very large and 

it may take a long time for the system to converge and react 

to changes. Thus, subsets of related variables are grouped into 

nodes. Each node runs on its own CBLA engine in parallel.   

There are several options for grouping sensors and 

actuators into nodes.  One approach is to group actuators and 

their associated proprioceptive sensors by function, because 

these relationships are the easiest to model. In addition, if 

multiple actuators work together to perform one function that 

directly affects one sensor, they should be grouped as a node 

because their relationship must be considered in order to 

produce a prediction model for the sensor input. However, 

grouping simply by function cannot capture environmental 

changes and occupant interaction effectively. 

Another approach is to group sensor input and actuator 

output variables by spatial proximity. Since environmental 

changes and occupant interaction are likely to affect 

components that are close together physically, this will allow 

the system to capture those dynamics more effectively.  

However, all sensor input and actuator output variables 

associated with a particular node are updated once per loop. 

This means that the loop speed is limited by the slowest 

actuator or sensor within the node. For instance, an SMA-

actuated Tentacle node has heating and cooling time of about 

12 seconds, while an LED can be turned on and off many 

degrees of magnitude faster. This is very inefficient and 

limiting for the fast components. Therefore, components 

running at different speeds should be grouped into different 

nodes. This allows each node to run at its own speed, 

independently from the other nodes.  

In our implementation, each node is constructed of 

components that are related functionally and proximally. For 

instance, LED output and ambient light sensor are in one 

node; Tentacle motion and accelerometer are in one node. On 

top of that, nodes that can be run at similar speed are grouped 

into one synchronization group. Different synchronization 

groups run at different frequencies and capture the dynamics 

of the system at different time scales.  

Nevertheless, if the nodes perform learning independently, 

the CBLA does not actually capture the dynamics of the entire 

system. To integrate the nodes into one coherent entity, we 

have used shared sensors. 

By using input variables relating to a common sensor, 

system changes effected by one node can be detected by 

another node indirectly. In our system, the Protocell node and 

Tentacle nodes share an IR proximity sensor. Figure 8 

illustrates the connections and groupings used in this 

experimental test bed.  

 

Figure 8. Nodes' connections and groupings 

IV. EXPERIMENT 1: DEMONSTRATION OF EXPLORATORY 

PATTERN OF THE CBLA ON A PROTOCELL NODE 

Although the CBLA was designed for a multi-node 

distributed system, it can be difficult to visualize the modeling 

process due to the high-dimensionality of the data and the 

models. To demonstrate the action selection pattern and the 

learning process, it was first tested on a simple toy example 

that can easily be visualized in 2-dimensional space. In this 

experiment, idle mode was disabled as the main objective was 

to observe and verify the exploration pattern of the CBLA.  

The system in this experiment consists of a Protocell node; 

a single-input, single-output system. For this system, S is a 

scalar measurement from an ambient light sensor, recorded 

directly as a 12-bit value. M corresponds to the voltage duty 

cycle supplied to the LED, with 0 being completely off (0V) 

and 100 being the maximum allowable voltage (~4.7V).  The 

loop period was set to 0.05s.  In this experiment, the system 

ran for 2500 time steps without any external interference.  

Based on the reward structure, which favours learning first 

the most predictable regions of the state-space, the CBLA 

should first explore the regions of the sensorimotor space that 

have low variance. Once the model in that region is learned, 

it should move on to areas with higher variance. 

Figure 9 shows the evolution of the prediction model and 

actual exemplars over time. As expected, the CBLA first 

selected actions associated with lower LED output levels, 

which were within the low variance regions. Once the models 

in the low brightness regions were acquired, it moved toward 

higher brightness regions. Figure 10 shows that the best action 

and the actual selected action were completely random at first 

(T<400). The system then focused on the easy-to-learn, lower 

brightness level. After that, it moved toward the hard-to-learn, 

higher brightness regions when it saw little improvement in 

the low-brightness regions (T=1500). After a period of 
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exploration in the high-brightness regions, their associated 

prediction errors were reduced, and the system returned to the 

low-brightness regions (T=1900).  The resulting pattern of 

activation was interesting visually, as it resulted in non-

random activations that have the potential to convey a notion 

of intent to the viewers. 

 
Figure 9. Evolution of the prediction models. Each point represents an 

exemplar. Points with the same colour are in the same region and the black 

lines are the cross-section of the linear models at S(t) = 0. The regions are 

numbered in the order that they were created.  

 
Figure 10. Action vs Time Graph; the y-axis is the output of the LED M(t) 

and the x-axis is the time step. Orange dots represent the actual action taken 
and blue dots represent the best action. The best action is defined as the action 

with the highest action value given the sensorimotor context. Non-best 
actions are selected occasionally in order to explore the state space. 

 
Figure 11. Mean error vs time graph. Each colour represents a region and the 

colour code corresponds to final prediction model graph in Figure 10. 

Figure 11 shows the mean error vs. time graph. The 

prediction error quickly dropped to a relatively low level. To 

improve its prediction further, the state-space was split into 

regions with low and high error. This allowed Region 1 (low 

variance region) to further reduce its prediction error. 

Figure 12 shows that the action value of a region does not 

stay constant. As the prediction improves, the value of actions 

in that region decreases over time as the region becomes 

“learned” and further learning potential decreases. 

 

Figure 12. Action value vs time graph 

V. EXPERIMENT 2: TENTACLE AND PROTOCELL NODES 

In this Section, we describe a demonstration of an integrated 

system consisting of both light and SMA actuation 

mechanisms. In this experiment, there is one Protocell node 

and three Tentacle nodes. The Protocell node was the same as 

in Section IV, with the addition of an IR proximity sensor. For 

the Tentacle node, the input variables are the average 

accelerometer readings of the three axes, and the IR proximity 

sensor reading over the 12.5s loop period; the output variable 

is the action of the Tentacle Arm. There are four discrete 

actions: rest, lower to the right, lower to the left, and lower to 

the centre. Note that in this set up, the two types of nodes run 

with different loop periods, but coupling between them is 

accomplished through the shared IR proximity sensor, which 

measures occupant proximity as a 12-bit value. 

The system runs undisturbed until, after some initial 

learning, all of the nodes enter idle mode.  During this time, 

the IR proximity sensor is pointed toward an empty area. 

Then, a participant approaches the sculpture space and is 

detected by the IR proximity sensor. The system should then 

exit idle mode and begin learning a new model that captures 

the change in the environment.  Since the IR sensor is shared 

by all nodes, they are all expected to recognize the change and 

exit idle mode at approximately the same time.  

Figure 13 shows how the action values change over time 

for each node. The coloured lines represent the action values 

and each colour represents a region. The blue dots underneath 

the plot indicate when the node was idle. 

At first, all the nodes started learning their own models, 

and then entered idle mode. At around 390s, a human 

participant walked in front of the IR proximity sensor. This 

triggered a large reduction in action value at first, due to an 

increase in prediction error. However, as more data was 

collected, the action values for all four nodes quickly jumped 
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up. This prompted the nodes to exit idle mode and begin 

generating actions in an attempt to learn the model. After a 

period of readjustment, all nodes re-entered idle mode after 

the new environment was learned. Videos of this experiment 

can be viewed in the accompanying video submission. 

From the video and Figure 13, one can see that the 

Protocell node and the three Tentacle nodes reacted to the 

environmental change nearly simultaneously. They exited the 

idle state and shifted to more exploratory actuation patterns. 

This showed that the shared sensor input variable was able 

link the CBLA engines together, even though they run 

independently at different frequencies. This experiment 

demonstrates that the reaction of the system to the changed 

environmental conditions creates an interaction with the 

visitor without any explicitly pre-programmed behaviours. 

The system’s intrinsic curiosity drives itself to perform 

actions and elicit responses from this new environment with 

the participant’s presence, and update its prediction model. 

We anticipate that the visitors will find such behaviours 

engaging as the visitors can recognize that the sculpture is 

responding to their presence and action but they would not be 

able to easily predict how it might respond. This quality 

provides the CBLA System the potential to be more life-like 

than a pre-scripted or a random system.  

 
Figure 13. Action-value vs Time graph for the Protocell node (a) and the 

three Tentacle nodes (b), (c), (d).  

VI. CONCLUSIONS AND FUTURE WORK 

Motivated by the desire to make interactive art sculpture 

more life-like and engaging in the long term, we adapted the 

concept of curiosity-based learning from developmental 

robotics for a distributed system with abstract forms and large 

numbers of sensors and actuators. By grouping subsets of 

input and output variables based on their functions, spatial 

proximities, and cycle times, each learning agent can mitigate 

the curse of dimensionality and operate with a configuration 

suitable for its component characteristics, while forming a 

coherent entity through shared sensors.  

We presented two experiments demonstrating the 

exploration patterns of the CBLA and testing the multi-node 

CBLA system integrated by a shared sensor. These promising 

results demonstrated the possibility of applying intrinsic 

curiosity-based learning on large-scale distributed system.  

In the future, we plan to conduct further experiments to 

examine and characterize the exploratory patterns and human 

perception of the emergent behaviours of a CBLA system 

with a larger number of nodes under various configurations. 
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